

UNIVERSITÄT BERN

Diagnosis and management of sleep apnea in stroke patients

Prof. Claudio L. Bassetti Neurology Department University Hospital, Bern Switzerland

	Ahead of Print on August 3, 2016 as 10.1212/WNL.0000000000003037
	Role of sleep-disordered breathing and
	sleep-wake disturbances for stroke and
	stroke recovery
Dirk M. Hermann, MD	ABSTRACT
Claudio L. Bassetti, MD	Background: Sleep-disordered breathing (SDB) and sleep-wake disturbances (SWD) are highly prevalent in stroke patients. Recent studies suggest that they represent both a risk factor and a consequence of stroke and affect stroke recovery, outcome, and recurrence.
Correspondence to Prof. Dr. med. Hermann:	Methods: Review of literature.
dirkherman@wak-esen.de or Prof Dr. ned Basetti daudio.basetti@insel.ch	Results: Several studies have proven SDB to represent an independent risk factor for stroke. Sleep studies in TIA and stroke patients are recommended in view of the very high prevalence (>50%) of SDB (Class IIb, level of evidence B). Treatment of obstructive SDB with continuous positive airway pressure is recommended given the strength of the increasing evidence in support of a positive effect on outcome (Class IIb, level of evidence B). Oxygen, biphasic positive airway pressure, and adaptive servoventilation may be considered in patients with central SDB. Recently, both reduced and increased sleep duration, as well as hypersonnia, insomnia, and restless legs syndrome (RLS), were also suggested to increase stroke risk. Mainly experimental studies found that SWD may in addition impair neuroplasticity processes and functional stroke recovery. Treatment of SWD with hypnotics and sedative antidepressants or stimulants (hypersonnia), dopaminergic drugs (RLS), and clonazepam (para- somnias) are based on single case observations and should be used with caution.
	Conclusions: SDB and SWD increase the risk of stroke in the general population and affect short- and long-term stroke recovery and outcome. Current knowledge supports the systematic imple- mentation of clinical procedures for the diagnosis and treatment of poststroke SDB and SWD on stroke units. <i>Neurology®</i> 2016;87:1-10

2019

EAN/ERS/ESO/ESRS statement on the impact of sleep disorders on risk and outcome of stroke

Claudio L.A. Bassetti^{*2}, Winfried Randerath^{*1}, Luca Vignatelli⁴, Anne-Kathrin Brill⁵, Maria R. Bonsignore⁶, Ludger Grote⁷, Poul Jennum⁸, Didier Leys⁹, Jens Minnerup¹⁰, Lino Nobili¹¹, Thomy Tonia¹², Rebecca Morgan^{13,}, Walter T. McNicholas¹⁶, Joel Kerry¹⁴, Luigi Ferini-Strambi^{**3}, Vasileios Papavasileiou^{**15}

*co-shared first authorship ** co-shared senior authorship

Eur J Neurol (in press) Eur Resp J (in press) 16 experts, 8 countries neurology, pulmonology stroke, methodology Vignette-Question Introduction Frequency of SDB in stroke pts Consequences of SDB in stroke pts Diagnostic approach Treatment Vignette-Answer Conclusions

V.C., 70y male

<u>History</u>

acute weakness, slurred speech PA: diabetes, hypertension, obesity no excessive daytime sleepiness

Status

dysarthria, hemiparesis, NIH=11 BMI=29

<u>Work-Up</u> Blood tests: dyslipidemia, HbA1c=6.5 Echocardiography, 24h ECG, doppler: normal

V.C., 70y male

The following statement is correct:

A. A sleep disordered breathing (SDB) is probable

B. The absence of sleepiness makes a SDB unlikely

- C. The diagnosis of SDB in the stroke unit is difficult
- D. The treatment of SDB in acute stroke patients is usually not possible and has no long-term effects

Vignette-Question Introduction Frequency of SDB in stroke pts Consequences of SDB in stroke pts Diagnostic approach Treatment Vignette-Answer Conclusions

"On the 10th of April he was found in bed, speechless, and hemiplegiac. . . . The only peculiarity in the last period of his illness, which lasted eight or nine days, was in the state of the respiration. For several days, his breathing was irregular; it would cease for a quarter of a minute, then it would become perceptible, though very low, then by degrees it became heaving and quick, and then it would gradually cease again. This revolution in the state of his

Plum and Posner, The diagnosis of Stupor and Coma

Types of SDB in stroke

- Obstructive sleep apnea
- Central sleep apnea (periodic breathing, Cheyne-Stokes)
- Mixed apneas

<u>Modulators</u>

- Sleep stage
- Position
- Interval after stroke

Cheyne-Stokes breathing after supratentorial stroke

Brown and Plum, Am J Med 1961

SDB and brainstem stroke

n=355, 13 days after stroke , ApneaLink PlusTM

Table 2

Sleep-disordered breathing indices, presented as medians and interquartile ranges, in ischemic stroke subjects (*n* = 355) with and without brainstem infarction.

Apnea-hypopnea index	Obstructive apnea index	Central apnea index	Hypopnea index
20 (11, 38)	3 (1, 11)	1 (0, 3)	11 (6, 15)
13 (6, 26)	3 (1, 10)	0(0,0)	6 (2,12)
0.007	0.622	0.04	0.002
22 (19, 44)	6 (2, 14)	2 (0, 4)	17 (9, 22)
16 (11, 35)	2 (1, 10)	1 (0, 3)	10 (6, 14)
37 (24, 38)) $7(4, 15)$ $1(1, 4)$		15 (13, 19)
	Apnea-hypopnea index 20 (11, 38) 13 (6, 26) 0.007 22 (19, 44) 16 (11, 35) 37 (24, 38)	Apnea-hypopnea index Obstructive apnea index 20 (11, 38) 3 (1, 11) 13 (6, 26) 3 (1, 10) 0.007 0.622 22 (19, 44) 6 (2, 14) 16 (11, 35) 2 (1, 10) 37 (24, 38) 7 (4, 15)	Apnea-hypopnea index Obstructive apnea index Central apnea index 20 (11, 38) 3 (1, 11) 1 (0, 3) 13 (6, 26) 3 (1, 10) 0 (0, 0) 0.007 0.622 0.04 22 (19, 44) 6 (2, 14) 2 (0, 4) 16 (11, 35) 2 (1, 10) 1 (0, 3) 37 (24, 38) 7 (4, 15) 1 (1, 4)

Vignette-Question Introduction Frequency of SDB in stroke pts Consequences of SDB in stroke pts Diagnostic approach Treatment Vignette-Answer Conclusions

Johnson, J Clin Sleep Med 2010

29 studies (until 12.2008) 2343 pts

AHI> 10 in 63% (23 studies) AHI>30 in 29% (10 studies)

Seiler, Neurology 2019

89 studies (until 4.2017) 7096 pts

AHI> 5 in 71% AHI>30 in 30%

SAS-CARE Study

2019

Sleep-disordered breathing in acute ischemic stroke and transient ischemic attack: effects on short- and long-term outcome and efficacy of treatment with continuous positive airways pressure – rationale and design of the SAS CARE study

Carlo W. Cereda¹, Liliane Petrini¹, Andrea Azzola², Alfonso Ciccone³, Urs Fischer⁴, Augusto Gallino⁵, Sandor Györik⁵, Matthias Gugger⁶, Johannes Mattis⁴, Lena Lavie⁷, Costanzo Limoni¹, Lino Nobili³, Mauro Manconi¹, Sebastian Ott⁶, Marco Pons², and Claudio L. Bassetti^{1,5}*

Int J Stroke 2012

- Full PSG within 1 week
- AASM 2012 criteria
- 168 consecutive stroke pts
- 74% stroke, 26% TIA
- male 72%, mean age 61±9
- NIHSS: 4±5 (0-40)

Ott (submitted)

- 50% AHI>15
- 30% AHI>30
- obstructive (84%)
- central (13%)

bad outcome at 3 monthshigh NIHSS/AHI

SDB improves after acute stroke and TIA

stable phase: after 3 months

TIME COURSE OF SLEEP RESPIRATORY DISTURBANCES: DIFFERENCES BETWEEN THE ACUTE AND STABLE PHASE IN A SUBGROUP OF 86 PATIENTS, CONSIDERING DIFFERENT STROKE SUBTYPES

	Transient Ische	ransient Ischemic Attack Phase		Ischemic Stroke Phase		Stroke Phase
	Acute	Stable	Acute	Stable	Acute	Stable
Patients, n	23	23	59	59	4	4
BMI, kg/m ²	27.6 ± 5	27.4 ± 4.3	26.8 ± 4.1	26.5 ± 3.8	24.7 ± 3.6	24.8 ± 2
AHI	22.3 ± 16.4	12.9 ± 12.1*	21.8 ± 17.8	$17.7 \pm 14.1^{\dagger}$	30 ± 17.1	26.8 ± 14
OAL	8.5 ± 12.2	5.7 ± 9.3	3.4 ± 6.6	4.1 ± 6.4	1.9 ± 3.3	5.5 ± 7.9
CAI	3.6 ± 6.5	$1.04 \pm 3.1^{\star}$	5.9 ± 9.9	$3.3 \pm 7.7^{\dagger}$	23.6 ± 16.3	15.2 ± 13
AHI						
> 10	7/23	10/23	40/59	38/59	3/4	3/4
> 30	3/23	4/23	18/59	11/59	3/4	3/4
CSB, n	5/23	0/23	10/59	6/59	2/4	0/4
CT90, %	11.2 ± 16.3	8.2 ± 15.2	9.6 ± 20	$5.4\pm16.6^{\dagger}$	11.6 ± 7.5	3.5 ± 3.9

For definition of abbreviations, see Table 1.

* Comparisons with baseline made with nonparametric tests.

[†] Comparisons with baseline made with parametric tests.

Parra, AJRCCM 2000

Vignette-Question Introduction Frequency of SDB in stroke pts Consequences of SDB in stroke pts Diagnostic approach Treatment Vignette-Answer Conclusions

Detrimental effects of SDB on stroke (short-term)

- Recurrent hypoxemia
- Increased/variable blood pressure
- Increased cardiac arrhythmias (?)
- Cerebral hypoperfusion
- Longer hospitalization (costs)
- Stroke progression?
- Short-term outcome?

Detrimental acute effects of SDB

oxygen desaturations

blood pressure swings

cerebral blood flow velocity swings

respiratory events

Yaggi and Mohsenin, Lancet Neurol 2004

Detrimental effects of SDB on stroke (longterm)

- Increased mortality
- Increased cardiovascular morbidity
- Poorer stroke outcome

Detrimental long-term effects of SDB

	No. of Deaths/ Total No. (%)	No. of Deaths/ Total No. (%)		Apnea-Hypopnea	Hazard Datio	Favors	Eavors	Weight
Source	Group 1	Group 2	Follow-up, y	Group 1 vs Group 2	(95% CI)	roup 1	Group 2	%
Severe OSA								
Young et al, ¹⁵⁰ 2008	12/63 (19.0)	46/1157 (4.0)	13.8	≥30 vs <5	2.70 (1.29-5.65)			13.47
Punjabi et al, ¹⁵¹ 2009	86/341 (25.2)	477/3429 (13.9)	8.2	≥30 vs <5	1.46 (1.14-1.86)			31.27
Gooneratne et al, 147 2011	35/42 (83.3)	59/119 (49.6)	13.8	≥20 and EDS vs <20 and no EDS	2.28 (1.46-3.57)	L		22.66
Ensrud et al,144 2012	25/209 (12.0)	155/2296 (6.8)	3.4	≥30 vs <30	1.74 (1.04-2.90)		B	20.22
Marshall et al, ¹⁵³ 2014	10/18 (55.6)	54/294 (18.4)	20	≥15 vs <5	4.20 (1.91-9.24)			12.38
Subtotal (12 = 57.8%, P = .05)				2.07 (1.48-2.91)		\diamond	100.0
Moderate OSA								
Young et al, ¹⁵⁰ 2008	6/82 (7.3)	46/1157 (4.0)	13.8	15 to <30 vs <5	1.30 (0.51-3.29)			4.04
Punjabi et al, ¹⁵¹ 2009	165/727 (22.7)	477/3429 (13.9)	8.2	15 to <30 vs <5	1.17 (0.97-1.42)		-	95.96
Subtotal (12=0.0%, P=.83)					1.17 (0.97-1.42)		\diamond	100.0
Mild OSA								
Young et al, 150 2008	16/220 (7.3)	46/1157 (4.0)	13.8	5 to <15 vs <5	1.50 (0.80-2.81)			28.94
Punjabi et al, ¹⁵¹ 2009	319/1797 (17.8)	477/3429 (13.9)	8.2	5 to <15 vs <5	0.93 (0.80-1.08)	-		71.06
Subtotal (12=52.7%, P=.15)				1.07 (0.70-1.63)	<	>	100.0
						D.5 1	.0 Hazard Ratio (95% CI)	

Jonas, JAMA 2017

Birkbak, J Clin Sleep Med 2014

OPEN

Obstructive Sleep Apnea and Serious Adverse Outcomes in Patients with Cardiovascular or Cerebrovascular Disease

A PRISMA-Compliant Systematic Review and Meta-Analysis

Wuxiang Xie, MD, PhD, Fanfan Zheng, MD, PhD, and Xiaoyu Song, MD, MPH

2014

Stroke risk in OSA pts after stroke/IHD (ischemic heart disease)

hospital-based cohort studies, OR 1.9 (95%, CI 1.3-2.9)

Xie, Medicine 2014

Vignette-Question Introduction Frequency of SDB in stroke pts Consequences of SDB in stroke pts Diagnostic approach Treatment Vignette-Answer Conclusions

Predictors of obstructive SDB

1.069
4.269
2.641

Bassetti, Milanova, Gugger, Stroke 2006

Night-time and wake-up strokes and SDB

TABLE 6. Independent Predictors of AHI						
	Wald's Statistic	P Value	Odds Ratio			
Age	14.722	0.000	1.069			
Diabetes	6.056	0.014	4.269			
Nighttime onset of stroke*	4.367	0.037	2.641			

Nagelkerke r²=0.295.

*Onset of stroke between 9:01 PM and 6.00 AM, 25%; between 6:01 AM and 9:00 PM, 75%.

Bassetti, Stroke 2006

Characteristic	With SRSO	Without SRSO	p value
Patient (n)	17	57	
Age (years)	68.8 ± 10.2	62.4±8.9	0.01
Sex (M:F)	11:6	28:29	0.26
AHI (no./h)	25.4±18.1	12.5 ± 11.1	0.001 ^a
AHI >10 (%)	82.4	45.6	0.01 ^a
BMI (kg/m ²)	24.6±2.7	24.6±3.4	0.65 ^a
HTN (%)	70.5	50.8	0.14 ^a
DM (%)	35.2	29.8	0.71 ^a
Smoking (%)	29.4	28.0	0.38 ^a
Alcohol (%)	52.9	26.3	0.02 ^a

^ap value after adjustment of age

SRSO sleep-related stroke onset, AHI apnea-hypopnea index, BMI body mass index, HTN hypertension, DM diabetes mellitus

Joo, Sleep Breath 2010

Figure 3—Presence of moderate-to-severe sleep apnea syndrome in patients with wake-up stroke and non-wakeup stroke (68.8% vs. 29.2%, p = 0.003).

Siarnik, J Clin Sleep Med 2016

Nocturnal Desaturation in the Stroke Unit Is Associated With Wake-Up Ischemic Stroke

Tae Jung Kim, MD; Sang-Bae Ko, MD, PhD; Han-Gil Jeong, MD; Ji Sung Lee, PhD;Chi Kyung Kim, MD, PhD; Yerim Kim, MD; Kiwoong Nam, MD; Heejung Mo, MD;Sang Joon An, MD; Huimahn Alex Choi, MD; Byung-Woo Yoon, MD, PhD

Predictors of central SDB

Postacute phase left ventricular ejection fraction

Acute phase stroke topography

			95% Confiden	ice Interval
Variables	Odds Ratio	p Value	Lower	Upper
Aqe	2.1	0.399	0.4	12.2
Sex	0.3	0.133	0.1	1.4
Atrial fibrilation	0.4	0.278	0.1	2.3
Ptc _{cn}	0.8	0.017	0.7	0.9
$LVEF \le 40\%$	8.5	0.040	1.1	66.1

Definition of abbreviations: LVEF = left ventricular ejection fraction; Ptc_{CO_2} = transcutaneous Pco_2 .

Nopmaneejumruslers, AJRCCM 2005

n=77

45±26 hours after stroke: AHI>10 in 53% CSA >10% of time in 39%

Hermann, Stroke 2007, Siccoli, J Neurol 2008

48-year-old man moderate hemispheric stroke (NIHSS=12)

sleep study at <u>Day 3</u> no EDS

Apnea-Hypopnea-Index=44 80% central min SaO₂=86%

SDB and stroke: Diagnosis

- Excessive sleepiness is uncommon in stroke pts with SDB
- Predictors: snoring, age/gender, obesity, night-time onset
- Portable devices*: accurate/validated tools for screening
- Severity often improves in the first few weeks

*ResMed AutoSet® ApneaLink Plus™

Bassetti, Stroke 1996; Reeves, Sleep Med 2014; Brown, Sleep Med 2014

THELANCETRM-D-16-00146R2	16tlrm0146 Articles
S2213-2600(16)30075-3	LWo
Embargo: June 14, 2016 [23:30] BST	This version saved: 11:45, 09-Jun-16
The NoSAS score for screening of sleep-disordered breathing: a derivation and validation study	ConsMark

Helena Marti-Soler, Camila Hirotsu, Pedro Marques-Vidal, Peter Vollenweider, Gérard Waeber, Martin Preisig, Mehdi Tafti, Sergio Brasil Tufik, Lia Bittencourt, Sergio Tufik, José Haba-Rubio*, Raphael Heinzer*

	Points
Neck circumference	4
Obesity	
BMI 25 kg/m² to <30 kg/m²	3
BMI ≥30 kg/m²	5
Snoring	2
Age >55 years	4
Cove male	2

Table 2: NoSAS score

Vignette-Question Introduction Frequency of SDB in stroke pts Consequences of SDB in stroke pts Diagnostic approach Treatment Vignette-Answer Conclusions

Early CPAP improves outcome after stroke

n=55, CPAP=16

	Inter	ntion-to-Tre	at	Adhe	rence Ana	alysis⁺
Outcome	Intervention (N = 31)	Control (N = 24)	P-value	No CPAP (N = 13)	Some CPAP (N = 6)	Acceptable CPAP (N = 10)
Stroke severity (NIHSS) median change from baseline to 30-days	-3.0	-1.0	0.03	-1.0	-2.5	-3.0
Vascular events*	1 (3.2)	3 (12.5)	0.31	2 (15.4)	0 (0)	0 (0)

10/16 pts with good adherence to CPAP (>75%, >4 nights)

Bravata, Sleep 2011

J Sleep Res. (2014)

Regular Research Paper

Efficacy of continuous positive airway pressure treatment on 5-year survival in patients with ischaemic stroke and obstructive sleep apnea: a randomized controlled trial

OLGA PARRA¹, ÁNGELES SÁNCHEZ-ARMENGOL², FRANCISCO CAPOTE², MARC BONNIN¹, ADRIÀ ARBOIX³, FRANCISCO CAMPOS-RODRÍGUEZ⁴, JOSÉ PÉREZ-RONCHEL⁴, JOAQUÍN DURÁN-CANTOLLA⁵, CRISTINA MARTÍNEZ-NULL⁵, MÓNICA DE LA PEÑA⁶, MARIA CARMEN JIMÉNEZ⁷, FERNANDO MASA⁴, IGNACIO CASADON⁸, MARIA LUZ ALONSO⁶ and JOSÉ L. MACARRÓN⁶

5-year survival stroke pts with AHI≥20

with early nCPAP (n=57) without nCPAP (n=69)

Figure 2. Cardiovascular survival [nasal continuous positive airway pressure (nCPAP) group and control group].

Neurologie, Neurozentrum

Modified Rankin Score

50 Percent of Subjects

Combined Intervention vs. Control,

p-value = 0.068

Standard

ntervention

Enhanced Intervention

Control

25

3

Diagnosing and Treating Sleep Apnea in Patients With Acute Cerebrovascular Disease

Dawn M. Bravata MD; Jason Sico, MD; Carlos A. Vaz Fragoso, MD; Edward J. Miech, EdD; Marianne S. Matthias, PhD; Rachel Lampert, MD; Linda S. Williams, MD; John Concato, MD; Cristina S. Ivan, MD; J. D. Fleck, MD; Lauren Tobias, MD; Charles Austin, MDiv; Jared Ferguson, BS; Radu Radulescu, MD; Lynne Iannone, MS; Susan Ofner, MS; Stanley Taylor, MA; Li Qin, PhD; Christine Won, MD; H. Klar Yaggi, MD

RCT n=252 enrolled 3 groups

auto-titrating CPAP follow-up: 12 months

CPA-use>4h in 70%

50 Percent of Subjects

Combined Intervention vs. Control.

p-value = 0.038

25

2-8 ≥9 NIH Stroke Scale

Published Ahead of Print on March 9, 2018 as 10.1212/WNL.000000000005262

CPAP as treatment of sleep apnea after stroke

A meta-analysis of randomized trials

Anne-Kathrin Brill, MD,* Thomas Horvath, MD,* Andrea Seiler, MD, Millene Camilo, PhD, Alan G. Haynes, PhD, Sebastian R. Ott, MD, Matthias Egger, MD, and Claudio L. Bassetti, MD

Correspondence Prof. Bassetti claudio.bassetti@insel.ch

Neurology[®] 2018;0:e1-e9. doi:10.1212/WNL.00000000005262

Brill, Neurology 2019

1980–11.2016 Pubmed, Embase, Cochrane

10 RCT's 5 <1 week, 5 10-28 days 483 pts

PRISMA statement Guidelines 2019

CPAP Usage

9 studies, median usage: 4.5h considerable heterogeneity (I²=87%)

Study	CPAP Usage	Ν	Weight	
Early				
Bravata 2010	5.60 (5.15 - 6.05)	45	1.59	1
Bravata 2011	5.10 (4.49 - 5.71)	31	1.49	
Parra 2011	5.30 (4.99 - 5.61)	71	1.66	
Minnerup 2012	4.20 (3.79 - 4.61)	25	1.61	
Brown 2013	4.50 (2.84 - 6.16)	15	0.77	-
	5.00 (4.43 - 5.58)		7.13	
Delayed			~	
Sandberg 2001	4.10 (3.21 - 4.99)	33	1.28	
Ryan 2011	4.96 (4.32 - 5.60)	25	1.47	
Aaronson 2016	2.50 (1.59 - 3.41)	20	1.26	
Khot 2016	3.90 (3.06 - 4.74)	20	1.32	
	3.90 (2.88 - 4.91)		5.32	
	4.53 (3.97 - 5.08)		•	
			2 3 4 5 6	5

Neurological outcome

5 studies, NIHSS/CSS **trends to improvement** (standardized mean difference 0.53) considerable heterogeneity (I²=82%)

Vignette-Question Introduction Frequency of SDB in stroke pts Consequences of SDB in stroke pts Diagnostic approach Treatment Vignette-Answer Conclusions

V.C., 70y male

Sleep study

Apnea-Hypopnea-Index: 72/h 85% obstructive events <u>Desaturations</u>: 178 min <90% 16 min <80%

V.C., 70y male

The following statement is correct:

A. A sleep disordered breathing (SDB) is probable

B. The absence of sleepiness makes a SDB unlikely

- C. The diagnosis of SDB in the stroke unit is difficult
- D. The treatment of SDB in acute stroke patients is usually not possible and has no long-term effects

Vignette-Question Introduction Frequency of SDB in stroke pts Consequences of SDB in stroke pts Diagnostic approach Treatment Vignette-Answer Conclusions

SDB and stroke: Conclusions

- SDB is frequent in acute stroke (30% > 30/h)
- SDB has (probably) a negative effect on outcome
- Risk profile >> symptoms predicts SDB in stroke pts
- CPAP treatment in acute stroke is feasible
- CPAP may have a positive effect on stroke outcome